Esophageal cancer

Does higher radiation dose lead to better outcome for non-operated localized esophageal squamous cell carcinoma patients who received concurrent chemoradiotherapy? A population based propensity-score matched analysis

Chih-Yi Chen a,1, Chia-Chin Li b,1, Chun-Ru Chien c,*

a Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University, Chung Shan Medical University Hospital; b Cancer Center, China Medical University Hospital; and c Cancer Center, Department of Radiation Oncology, China Medical University Hospital; School of Medicine, College of Medicine, China Medical University, Taiwan

A R T I C L E I N F O

Article history:
Received 16 February 2016
Received in revised form 11 April 2016
Accepted 28 April 2016
Available online 17 May 2016

Keywords:
Esophageal squamous cell carcinoma
Concurrent chemoradiotherapy
Radiotherapy dose

A B S T R A C T

Background: The optimal radiotherapy dose for non-operated localized esophageal squamous cell carcinoma (NOL-ESCC) patients undergoing concurrent chemoradiotherapy (CCRT) is hotly debated.

Methods: We identified eligible patients diagnosed within 2008–2013 from Taiwan Cancer Registry and constructed a propensity score matched cohort (1:1 for high dose (≥60 Gy) vs standard dose (50–50.4 Gy)) to balance observable potential confounders. We compared the hazard ratio (HR) of death between standard and high radiotherapy dose groups during the entire follow-up period. We performed sensitivity analysis (SA) to evaluate the robustness of our finding regarding potential unobserved confounders & index date definition.

Results: Our study population constituted 648 patients with well balance in observed co-variables. The HR of death when high dose was compared to standard dose was 0.75 (95% confidence interval 0.64–0.88). Our result was sensitive to potential unobserved confounders but robust to alternative index date definition in SA.

Conclusions: We found that higher than standard radiotherapy dose may lead to better survival for NOL-ESCC patients undergoing CCRT.

C211 2016 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 120 (2016) 136–139

Esophageal cancer is one of the common causes of cancer death around the world [1]. The histological type in most of the patients is squamous cell carcinoma [SqCC] although adenocarcinoma is currently more common in Australia, the UK, the USA, and some western European countries [1,2]. For non-operated localized esophageal SqCC [NOL-ESCC], concurrent chemoradiotherapy [CCRT] is the standard of care [3,4]. However, the optimal radiotherapy dose is hotly debated [5] after the publication of the randomized controlled trial [RCT] INT-0123 [6], in that 50.4 Gy was endorsed in the North America guideline [3] in concordant with the INT-0123 whereas 50–60 Gy was acceptable in the European guideline [4]. A recent systematic review [7] had included INT-0123 as the only study relevant to RT dose but an evidence-based review paper still commented “A further dose escalation should be considered as justified” [8]. So, we undertook this retrospective population-based propensity-score matched study to evaluate the survival impact of high dose vs standard dose.

Methods

Data source

The data source comes from Taiwan Cancer Registry (TCR) and death registration in this study. TCR is a high quality cancer registry [9] and provides sufficient information regarding individual demographics, stage of disease, tumor histology, and primary treatment details.

Study population and study design

Our study flow chart was depicted in Fig. 1. The study population consisted of non-operated [ie, surgery was not performed as the primary treatment] localized esophageal squamous cell carcinoma patients who received concurrent chemoradiotherapy with external beam radiotherapy and diagnosed within 2008–2013. In the primary analysis, we adopted the date of diagnosis in the
We decided the explanatory variable of cancer registry as the index date as commonly used in registry-staging clinical stage 2–4a (2008–2009) or 7th stage 2–3 (2010–2013). We obtained the survival status in the end of follow-up according to death registry. We used this information to compare the overall survival (OS) of patients between standard and high RT dose groups.

Statistical & Sensitivity Analysis [SA]

Statistical analysis was performed using SAS 9.4 (SAS Institute, Cary, NC) except STATA 12.1 [StataCorp LP, College Station, TX USA] in matching. Tabulation and standardized difference were used to assess the balance of covariates between PS-matched groups. We compared the hazard ratio of death between standard and high RT dose groups during the entire follow-up period using a robust variance estimator [16]. Under the assumption of “no unmeasured confounder”, the probability of receiving either treatment should be the same after PS matching. However, if there was an unmeasured confounder which was associated with both treatment selection and outcome, then the true probability of receiving treatment might be differed for a factor [labeled as 1] even after PS matching. Therefore, we undertook the 1st sensitivity analysis [SA-1] as suggested in the literature [16] to assess the extreme statistical significance of the treatment effect that would be observed had this unmeasured confounder had been accounted for, at various levels of 1. Therefore, the robustness of our result could be tested at various levels of violation of the “no unmeasured confounder” assumption. We did another sensitivity analysis [SA-2] to examine the impact of alternative index date definition [date of start of treatment rather than date of diagnosis in the primary analysis]. This study was approved by Research Ethics Committee, National Health Research Institutes [EC1041006-E].

Results

Identification of the study population

As revealed in Fig. 1, 1888 cancer patients who received CCRT with external beam radiotherapy among groups (standard or high RT dose) were identified as the initial study population. After exclusion of missing data and using PS matching method, the final study population included 648 patients. The patient characteristics were described in Table 1. Well balance in covariates and small standardized differences (<0.25) were seen for all covariates [17].

Clinical outcomes

For the entire follow-up period, the hazard ratio (HR) of death when high RT dose was compared to standard dose was 0.75 (95% confidence interval 0.64–0.88). The 5-year overall survival rate was 22% for high RT dose vs 14% for standard RT dose. The Kaplan–Meier survival curve for OS is shown in Fig. 2.

Sensitivity analysis

In SA-1 regarding the potential impact of some unmeasured confounder[s], we found that if there was an unmeasured binary confounder that increases the odds of high RT dose (vs standard RT dose) for 4% instead of zero, our conclusion that high dose was more effective would remain statistically significant (p = 0.049). However, if there was an unmeasured binary confounder that increases the odds of high dose for at least 4.5%, then the observed effectiveness of high dose might be no longer considered for cervical esophageal cancer [3]. Peri-CCRT systemic therapy [i.e., induction or consolidative in additional to CCRT] was classified as with yes or no External beam radiotherapy delivery was classified as 3D conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT) as well as IGRT or non-IGRT. The interval of radiotherapy break was classified as >1 week or ≤1 week.

Effectiveness assessment

In this study, we included patient demographic (age, gender, residency region), disease characteristics (tumor location, clinical T-stage and N-stage), and treatment characteristics including use of peri-CCRT systemic therapy and RT delivery factors (3D conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT); image-guided radiotherapy (IGRT) or non-IGRT; radiotherapy break). The selection and definition of these factors were based on our experiences in clinical care and prior related studies [3,12–15]. The definitions of our co-variables were as follows. Age was classified ≥ 65 year old or not. Patient residency region was classified as northern Taiwan or elsewhere. T-stage was classified as T1–T2 or T3–T4. N-stage was classified as positive [N1M0 or N0–1M1a (2008–2009); N1–N3 (2010–2013)] or negative. Tumor location was classified as cervical vs others since higher dose might be considered for cervical esophageal cancer [3]. Peri-CCRT systemic therapy [i.e., induction or consolidative in additional to CCRT] was classified as with yes or no External beam radiotherapy delivery was classified as 3D conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT) as well as IGRT or non-IGRT. The interval of radiotherapy break was classified as >1 week or ≤1 week.
In SA-2, our results remained robust [HR = 0.75, p-value = 0.0004]. In SA-2, our results remained robust [HR = 0.75, p-value = 0.0004].

Discussion

In this population-based, propensity scored-matched analysis, we found that higher than standard radiotherapy dose may lead to better survival for non-operated localized esophageal squamous cell carcinoma patients undergoing CCRT.

Obviously our results were contradictory to the only relevant RCT [INT-0123] [6,7]. However, the results of INT-0123 had been criticized due to that “Although 11 treatment-related deaths occurred in the high dose arm compared with 2 in the standard-dose arm, 7 of the 11 deaths occurred in patients who had received 50.4 Gy or less” [5]. In addition, the authors of INT-0123 had reported “When comparing the high-dose versus low-dose arms, there was a significant prolongation of treatment time because of toxicity breaks” which might be improved in the modern era of RT. Therefore, we had incorporated the use of modern RT techniques as 3DCRT or IMRT was required in our study. We had also controlled the impact of treatment prolongation in our study by including RT break as a co-variable.

To our knowledge, our results were compatible with two retrospective studies found in Pubmed using “((esophageal cancer) OR (esophageal carcinoma) OR (oesophageal carcinoma) OR (oesophageal cancer)) AND [(radiation therapy) OR (radiotherapy)] AND dose [field: title]”. Suh YG et al. had reported “median overall survival in the high- and the standard-dose groups was 28 and 18 months” among 126 patients treated with CCRT [18]. Zhang et al. had reported “The median survival time was 9 months for the lower dose group and 14.5 months for higher dose group” among 69 patients treated with CCRT [19]. Higher RT dose had also been reported as a good prognostic factor in two retrospective prognostic analyses. Wolf MC et al. had reported “The use of radiation doses over 54 Gy were associated with improved OS” [20] and Semrau et al. had reported “patients who received a radiotherapy dose ≥60 Gy had a significantly higher 2-year overall survival” [21]. Furthermore, in RCTs comparing definitive CCRT vs surgery, RT dose up to at least 60 Gy was used [22–24]. Given the still poor outcome for NOL-ESCC receiving definitive CCRT and the generally accepted radiotherapy dose–response relationship, the interpretation of our results seems straightforward.

There are currently 2 ongoing Trials [NCT01937208: 50–50.4 Gy vs 60 Gy since 2013; NCT02556762: 50 Gy/25F vs 66 Gy/30F to the gross tumor and 50 Gy/25F to subclinical diseases, since 2015] when we checked [www.clinicaltrials.gov] in Jan 2016 using “esophageal cancer | Interventional Studies | concurrent | Phase 3”. Therefore, the optimal radiotherapy dose during definitive CCRT for NOL-ESCC will remain to be debated in the near future. Our results implicated that, although contradictory with INT-0123, our results did provide some rationale for the current ongoing trials and potential practice for selected patients in the real world, before the above mentioned modern RCT results were available.

There were several limitations in our study. Firstly, as a non-randomized study, our results could be due to unobserved confounding factors although we had used PS matching to balance

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>RT standard dose</th>
<th>RT high dose</th>
<th>Standardized difference (rounded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age <65</td>
<td>241 (74.38)</td>
<td>253 (78.09)</td>
<td>0.087</td>
</tr>
<tr>
<td>≥65</td>
<td>83 (25.62)</td>
<td>71 (21.91)</td>
<td></td>
</tr>
<tr>
<td>Gender Female</td>
<td>14 (4.32)</td>
<td>15 (4.63)</td>
<td>0.015</td>
</tr>
<tr>
<td>Male</td>
<td>310 (95.68)</td>
<td>309 (95.37)</td>
<td></td>
</tr>
<tr>
<td>Residency Non-north</td>
<td>192 (59.26)</td>
<td>191 (58.95)</td>
<td>0.006</td>
</tr>
<tr>
<td>North</td>
<td>132 (40.74)</td>
<td>133 (41.05)</td>
<td></td>
</tr>
<tr>
<td>T-stage T1–T2</td>
<td>68 (20.99)</td>
<td>97 (29.94)</td>
<td>0.207</td>
</tr>
<tr>
<td>T3–T4</td>
<td>256 (79.01)</td>
<td>227 (70.06)</td>
<td></td>
</tr>
<tr>
<td>N-stage Positive</td>
<td>288 (88.89)</td>
<td>282 (87.04)</td>
<td>0.057</td>
</tr>
<tr>
<td>Negative</td>
<td>36 (11.11)</td>
<td>42 (12.96)</td>
<td></td>
</tr>
<tr>
<td>Peri-CCRT systemic therapy With</td>
<td>99 (30.56)</td>
<td>87 (26.85)</td>
<td>0.082</td>
</tr>
<tr>
<td>Without</td>
<td>225 (69.44)</td>
<td>237 (73.15)</td>
<td></td>
</tr>
<tr>
<td>RT delivery 3DCRT</td>
<td>43 (13.27)</td>
<td>49 (15.12)</td>
<td>0.053</td>
</tr>
<tr>
<td>IMRT</td>
<td>281 (86.73)</td>
<td>275 (84.88)</td>
<td></td>
</tr>
<tr>
<td>IGRT</td>
<td>56 (17.28)</td>
<td>63 (19.44)</td>
<td>0.056</td>
</tr>
<tr>
<td>With</td>
<td>268 (82.72)</td>
<td>261 (80.56)</td>
<td></td>
</tr>
<tr>
<td>Without</td>
<td>260 (80.25)</td>
<td>273 (84.26)</td>
<td>0.105</td>
</tr>
<tr>
<td>RT break ≤1 week</td>
<td>64 (19.75)</td>
<td>51 (15.74)</td>
<td></td>
</tr>
<tr>
<td>>1 week</td>
<td>17 (5.25)</td>
<td>23 (7.1)</td>
<td>0.077</td>
</tr>
<tr>
<td>Location Cervical</td>
<td>17 (5.25)</td>
<td>23 (7.1)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>307 (94.75)</td>
<td>301 (92.9)</td>
<td></td>
</tr>
</tbody>
</table>

1 Rounded at 2nd; 3DCRT: 3D conformal RT; CCRT: concurrent chemoradiotherapy; IGRT: image-guided RT; IMRT: intensity-modulated RT; RT: radiotherapy; sd: standard deviation.
observed confounders. For example, information regarding performance status and use of salvage surgery were not available in the current TCR and were therefore potential unobserved confounders. Therefore we performed sensitivity analysis to test this “no unobserved confounder assumption” and found that our results were sensitive to this assumption. So, our results should be interpreted with caution and we should still wait for the above RCT’s results to make firm conclusion. Secondly, lack of treatment detail such as chemotherapy could make it hard to compare our results with other reports.

In conclusion: In this population-based, propensity score-matched analysis, we found that higher than standard radiotherapy dose may lead to better survival for non-operated esophageal squamous cell carcinoma patients undergoing CCRT. Our results should be interpreted with caution given sensitive to potential unobserved confounders and we should still wait for the above RCT’s results to make a firm conclusion.

Conflict of interest statement

The authors declare that they have no conflict of interests.

Acknowledgments

This work is supported by Health Promotion Administration, Ministry of Health and Welfare, Taiwan (R.O.C.). Sources of funding are from the tobacco control and health care funds. We thank the comments from the editor and the two anonymous reviewers.

References